Adapting-bump model for eccentric cells of Limulus
نویسندگان
چکیده
Light-evoked intracellular voltage noise records have been obtained from Limulus eccentric cells, from threshold light intensity to an intensity .10(5) times threshold. These data are analyzed in terms of a simple "adapting-bump" noise model. It is shown how the model yields a data reduction procedure that slightly generalizes the familiar use of Campbell's theorem for Poisson shot noise: the correlative effect of adaptation amends Campbell's theorem by a single multiplicative factor, which may be estimated directly from the power spectrum of the noise data. The model also permits direct estimation of the bump shape from the power spectrum. The bump shape estimated from noise at dim light is in excellent agreement with the average shape of bumps observed directly in the dark. The data yield a bump rate that is linear with light up through about 50 times threshold intensity but that falls short of linearity by a factor of 35 at the brightest light. The bump height decreases as the -0.4 power of light intensity across the entire range. Bump duration decreases by a factor of 2 across the entire range, and the adaptation correlation factor descends from unity to about one-third. The modest change of the adaptation correlation shows that naive application of Campbell's theorem to such data is adequate for rough estimation of the model's physiological parameters. This simple accounting for all the data gives support to the adapting-bump model.
منابع مشابه
Adapting bump model for ventral photoreceptors of Limulus
Light-evoked current fluctuations have been recorded from ventral photoreceptors of Limulus for light intensity from threshold up to 10(5) times threshold. These data are analyzed in terms of the adapting bump noise model, which postulates that (a) the response to light is a summation of bumps; and (b) the average size of bump decreases with light intensity, and this is the major mechanism of l...
متن کاملRepetitive firing: quantitative analysis of encoder behavior of slowly adapting stretch receptor of crayfish and eccentric cell of Limulus
Techniques developed for determining summed encoder feedback in conjunction with the leaky integrator and variable-gamma models for repetitive firing are applied to spike train data obtained from the slowly adapting crustacean stretch receptor and the eccentric cell of Limulus. Input stimuli were intracellularly applied currents. Analysis of data from cells stringently selected by reproducibili...
متن کاملDispersion of latencies in photoreceptors of Limulus and the adapting- bump model
To light stimuli of very low intensity, Limulus photoreceptors give a voltage response with a fluctuating delay. This phenomenon has been called "latency dispersion." If the generator potential is the superposition of discrete voltage events ("bumps"), and if the effect of light upon bump size is negligible, then the latency dispersion and the bump shape completely characterize the frequency re...
متن کاملCircadian rhythms in Limulus photoreceptors. II. Quantum bumps
The light response of the lateral eye of the horseshoe crab, Limulus polyphemus, increases at night, while the frequency of spontaneous discrete fluctuations of its photoreceptor membrane potential (quantum bumps) decreases. These changes are controlled by a circadian clock in the brain, which transmits activity to the eye via efferent optic nerve fibers (Barlow, R. B., S. J. Bolanski, and M. L...
متن کاملLight-Initiated Responses of Retinula and Eccentric Cells in the Limulus Lateral Eye
The relationship between retinula and eccentric cells in the lateral eye of Limulus polyphemus was studied using a double electrode technique which permitted simultaneous recording of light-initiated responses in two sense cells and the labeling of the cells for subsequent histological examination and identification. The following results were obtained: (a) light-initiated slow responses with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 76 شماره
صفحات -
تاریخ انتشار 1980